Parting Thoughts

Managing the Transition from Complexity to Elegance:

Knowing when you have a problem

CHARLES MOORE

crmoore@cs.utexas.edu

In this first installment of a short series,
former IBM Power4 chief engineer Chuck
Moore takes a humorous look at how it's
easy for complexity to take a design team
by surprise.

He bases this column on his keynote
speech for the Workshop on Complexity-
Effective Design, an event held as part of
ISCA 2003.

—Pradip Bose, Editor in Chief

e e e 0 0 e One of the interesting things
about complexity is how sneaky it can be.
No one working on a microprocessor
design project wakes up in the morning
and thinks, “I'm going to design the most
complex set of mechanisms on the face
of the planet.” But nonetheless, we often
find ourselves, and our designs, mired in
complexity at some point in the design
process.

If only it were possible to spot the first
symptoms of complexity and to refine the
design early on to minimize as much
extraneous complexity as possible.
Toward this end, I've come up with a list
of “top 10" indicators that your design
project might have complexity issues. Per-
haps the most interesting thing about this
listis that I've actually encountered every
single one in real projects that | have lead
or managed—I'm not just making these
up!

Indicator 10:
You have a daily meeting to discuss
new requirements

Feature creep is a familiar concept to
hardware and software developers alike.
Itis the tendency to accept new features
into a project throughout the project’s
course. | believe that a key discipline for
managing complexity in projects is to
learn how to say “No!" If you find your-
self having daily meetings to discuss new
requirements, you probably are not say-
ing “no” loud enough.

Although such meetings might be
appropriate very early in the design
process, their presence later on is a sure
sign of trouble. Early requirements con-
tribute to setting in place the guiding prin-
ciples and baseline structure of the
design. New requirements that don't fit
into that existing structure will typically
lead to undesirable complexity.

Indicator 9:
Your architects outnumber your
verification people

If your architects outnumber your veri-
fication people, this is an indication that
you are probably out of balance when it
comes to managing complexity. Archi-
tects like to invent and create—it is in their
blood. And every time they invent or cre-
ate, there's a verification burden associ-
ated with the innovation. It is actually

Published by the IEEE Computer Society

harder to verify a design than to create it,
so | think the appropriate ratio of archi-
tects to verification people is actually
about 1:2. In other words, for every archi-
tect, there should be two verification peo-
ple. Unfortunately, that's often not the
case in industry projects these days.

Indicator 8:
You find large triple-nested
“case statements” in the HDL

The hardware description language
(HDL) is a key representation of the
design. It is critically important that it is
both a functionally clean and a structural-
ly accurate representation of the actual
design. Triple-nested “case statements”
in the HDL are an indicator that the design
probably isn't really very well structured.
Chances are, the designer isn't really
thinking of this as a representation of
hardware, but rather, as chunk of software
code. This code-based mindset is very
dangerous because the HDL must not
only express the functionality, but also the
inherent hardware structure that will ulti-
mately be built. Furthermore, this situa-
tion often produces spaghetti code that
tends to escalate the complexity over
time because as the design team finds
bugs, the fixes tend to be patches rather
than clean structural improvements.

continued on p. 86

0272-1732/03/$17.00 © 2003 IEEE

PARTING THOUGHTS

continued from p. 88

Indicator 7:
Most “design fixes” result in one or
more new bugs

In some sense, an ill-conceived design
is a form of complexity. Such designs are
difficult to understand and difficult to fix.
If every time a designer tries to fix a bug,
it creates new bugs, this is an indication
that you've either got an ill-conceived
design, a spaghetti code representation
of it, or both. In any case, chances are the
designer really isn't on top of the design,
and this is probably because it involves
more complexity than he can handle. Left
unmanaged, this situation tends to be a
vicious cycle and can easily spin out of
control—the sort of scenario that actual-
ly kills projects.

Indicator 6:

Designer says, “Let’s get the
function right first, then worry
about those other things”

When designers say, “let's get the
function right first, then worry about
those other things," they are forgetting
that those other things—timing, testabil-
ity, clocking, debug, and reset just to
name a few—Iead to very important struc-
tural aspects of the final design. Usually
when designers start talking like this, it
means that they are challenged by the
details of the functionality and are unable
to balance functionality with the require-
ments that come from these other
aspects of the design. What you really
want are designers who are capable and
willing to design functions multiple times
so that they can select the solution that
yields the best physicalinstantiation in the
end.

If a designer is having difficulty just get-
ting the functionality off the ground,
chances are the design is going to be seri-
ously disrupted when you bring these other
factors into play. If the project leaders allow
situations like this to continue, they risk run-
ning into big problems later on when it
comes time to close down the design.

Hﬁ |EEE MICRO

Indicator 5:
Design team has five different
phrases for talking about the same
thing

Using multiple names for the same thing
is classic engineerstyle communication,
but it tends to lead to big problems. When
you talk about an interface or a function,
and you're trying to communicate with
other designers, it is very important that
everyone understand the discussion in the
same specific way. Effective commmunica-
tion among designers is just as important
as effective communication among the cir-
cuits on the chip. Unless the team can talk
the same language, you're in big trouble.
So whenever | see multiple interpretations
emerge from some set of terminology, |
force people to say what they mean, zero-
ing in on the term they should use. It
sounds silly, but this sort of social discipline
within the team can avoid lots of problems
and, in the end, it can avoid a lot of expen-
sive misunderstandings.

Indicator 4:
Designer asks, “ What knee of the
curve?”

This is sort of an Engineering 107 prin-
ciple, but it is amazing how often people
choose to optimize by the seat of their
pants. If you can imagine a plot in which
aline has an upward climb for a while and
then flattens out, the flattening point is
typically called the knee of the curve. For
example, in a plot of L1 cache size versus
performance, you may be gaining benefit
as you increase cache size, but once you
hit the knee, the performance stays about
the same even when you continue
increasing the cache size. After that point,
you're getting little—if any—return for the
extra resources provided.

As it turns out, every aspect of the
design has a knee of the curve associat-
ed with it, and it is part of the designers’
job to understand and optimize around it
appropriately.

If designers seem unaware of these
inherent design sensitivities, chances are
they've either undersized or oversized the
resources, which can cause disruptions

and problems later. If the design is under-
sized, you might have to add resources
later, which is usually a messy proposi-
tion, to make the design work within per-
formance specs. Or, if oversized, you
might have created a larger, more expen-
sive or more power hungry design than
was actually necessary.

Indicator 3:

The number of operational modes
approaches the number of
instructions

It sounds crazy, but I've seen designs
where there were almost as many modes
as there were instructions. That's because
it's very tempting to add operational modes
to a design. For example, it helps avoid
making difficult decisions: “I couldn't quite
decide whether it should do this or that, so
I put a little mode in, and now software can
select whichever is more appropriate in
each case.” This may be a well-intentioned
and seemingly friendly gesture, but it is also
quite expensive in the end.

For every mode that you put into a
design, you're really adding a new dimen-
sion to the verification problem. In some
sense, with each mode bit, you've dou-
bled the state that the verification process
must consider in evaluating the overall
design. When a machine has as many
modes as instructions, just imagine the
huge cross-product matrix this situation
creates! It becomes a very ugly, and com-
plex, verification problem.

Indicator 2:
Designer says, “It is really simple;
Jjust can’t explain it to you”

When designers can't explain their
design clearly, | believe that the appropri-
ate take-away message is that “It is too
complicated for me to handle.” An effective
design element must be easily communi-
cated so that others can interface with it
and work with it. It must be broken down
into a hierarchy of cooperating mechanisms
and interfaces. | believe that if a designer
can't describe their design in English or on
a whiteboard, they have no business trying
to describe itin the HDL. Itis likely that this

person is deferring an understanding—a
level of understanding—that is really impor-
tant, and that this is almost certainly going
to come back to haunt the project later on.

Indicator 1:
Several individuals on your team
have filed in excess of 100 patents
Patents are good, in general, and | like
patents. | actually have a whole bunch of
them. But, when people file a patent, they
feel obligated to use it—to express it with-
in their design. In reality, you cannot afford
to put every good idea from your design-
ers into the final design. You must decide
what is really important and just say “no”
to lots of other interesting ideas. Part of
the problem here is that many companies
offer incentives to people for filing
patents, often making it highly lucrative.
At the same time, however, companies
want designs completed on time and
according to specifications. So in effect,
designers get a mixed message: “Be

inventive, but also don’t make the designs
too complicated.” It is important that the
design process help strike a balance
between these antagonistic goals.

A friend at IBM once suggested that
companies offer counterbalancing incen-
tive programs: They should reward people
for patents and also for the successful
removal of complex mechanisms from the
design (he likes to call these "“anti-
patents”). | think he's on the right track,
because the design space for a micro-
processor starts with a very broad set of
possible options, but must ultimately settle
in on a set that meets the requirements as
optimally as possible. The design process
is all about convergence: making decisions
and narrowing the scope to a point where
the design strikes that right balance
between complexity and elegance.

Hopefully, most of you can relate to at
least a few of these indicators. Together,
they point toward a dichotomy that, as

Eleven good reasons why
movre than 100,000
computing professionals

join the

architects and designers, we must solve.
On the one hand, we are creative people
who want to invent and to include clever
new ideas in our design. On the other
hand, we are trying to achieve an appro-
priate level of efficiency and elegance in
the design, which demands that we elim-
inate as much complexity as possible.

That's why I've entitled this series Man-
aging the Transition from Complexity to
Elegance. Achieving elegance requires a
ruthless attack on complexity and the
sources of complexity. In future install-
ments of this column, | will continue to
describe these sources of complexity as
well as a ruthless design process blue-
print that helps to manage it.

Charles Moore is a senior research fel-
low at The University of Texas at Austin.
Previously, he was the chief engineer on
the IBM’'s Power4 and PowerPC 601
Microprocessors.

IEEE

COMPUTER
SOCIETY

computer.org/publications/

IEEE Computer Society

Transactions on

B Computers

B Information Technology in Biomedicine

B Knowledge and Data Engineering

B Mobile Computing

B Multimedia

B Networking

B Parallel and Distributed Systems

B Pattern Analysis and Machine Intelligence

B Software Engineering

B Very Large Scale Integration Systems

B Visualization and Computer Graphics

SEPTEMBER—OCTOBER 2003 H]

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

